Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 31(4): 554-569.e17, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579685

RESUMO

The YAP/Hippo pathway is an organ growth and size regulation rheostat safeguarding multiple tissue stem cell compartments. LATS kinases phosphorylate and thereby inactivate YAP, thus representing a potential direct drug target for promoting tissue regeneration. Here, we report the identification and characterization of the selective small-molecule LATS kinase inhibitor NIBR-LTSi. NIBR-LTSi activates YAP signaling, shows good oral bioavailability, and expands organoids derived from several mouse and human tissues. In tissue stem cells, NIBR-LTSi promotes proliferation, maintains stemness, and blocks differentiation in vitro and in vivo. NIBR-LTSi accelerates liver regeneration following extended hepatectomy in mice. However, increased proliferation and cell dedifferentiation in multiple organs prevent prolonged systemic LATS inhibition, thus limiting potential therapeutic benefit. Together, we report a selective LATS kinase inhibitor agonizing YAP signaling and promoting tissue regeneration in vitro and in vivo, enabling future research on the regenerative potential of the YAP/Hippo pathway.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Proteínas de Sinalização YAP , Animais , Humanos , Camundongos , Proliferação de Células , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/agonistas , Proteínas de Sinalização YAP/efeitos dos fármacos , Proteínas de Sinalização YAP/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
2.
Liver Int ; 43(9): 1984-1994, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37443448

RESUMO

BACKGROUND AND AIMS: A reduction in hepatic venous pressure gradient (HVPG) is the most accurate marker for assessing the severity of portal hypertension and the effectiveness of intervention treatments. This study aimed to evaluate the prognostic potential of blood-based proteomic biomarkers in predicting HVPG response amongst cirrhotic patients with portal hypertension due to Hepatitis C virus (HCV) and had achieved sustained virologic response (SVR). METHODS: The study comprised 59 patients from two cohorts. Patients underwent paired HVPG (pretreatment and after SVR), liver stiffness (LSM), and enhanced liver fibrosis scores (ELF) measurements, as well as proteomics-based profiling on serum samples using SomaScan® at baseline (BL) and after SVR (EOS). Machine learning with feature selection (Caret, Random Forest and RPART) methods were performed to determine the proteins capable of classifying HVPG responders. Model performance was evaluated using AUROC (pROC R package). RESULTS: Patients were stratified by a change in HVPG (EOS vs. BL) into responders (greater than 20% decline in HVPG from BL, or <10 mmHg at EOS with >10 mmHg at BL) and non-responders. LSM and ELF decreased markedly after SVR but did not correlate with HVPG response. SomaScan (SomaLogic, Inc., Boulder, CO) analysis revealed a substantial shift in the peripheral proteome composition, reflected by 82 significantly differentially abundant proteins. Twelve proteins accurately distinguished responders from non-responders, with an AUROC of .86, sensitivity of 83%, specificity of 83%, accuracy of 83%, PPV of 83%, and NPV of 83%. CONCLUSIONS: A combined non-invasive soluble protein signature was identified, capable of accurately predicting HVPG response in HCV liver cirrhosis patients after achieving SVR.


Assuntos
Hepatite C , Hipertensão Portal , Humanos , Resposta Viral Sustentada , Proteômica , Cirrose Hepática , Hipertensão Portal/tratamento farmacológico , Hipertensão Portal/etiologia , Hepacivirus , Pressão na Veia Porta , Pressão Venosa
3.
Cell Stem Cell ; 28(10): 1822-1837.e10, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34129813

RESUMO

AXIN2 and LGR5 mark intestinal stem cells (ISCs) that require WNT/ß-Catenin signaling for constant homeostatic proliferation. In contrast, AXIN2/LGR5+ pericentral hepatocytes show low proliferation rates despite a WNT/ß-Catenin activity gradient required for metabolic liver zonation. The mechanisms restricting proliferation in AXIN2+ hepatocytes and metabolic gene expression in AXIN2+ ISCs remained elusive. We now show that restricted chromatin accessibility in ISCs prevents the expression of ß-Catenin-regulated metabolic enzymes, whereas fine-tuning of WNT/ß-Catenin activity by ZNRF3 and RNF43 restricts proliferation in chromatin-permissive AXIN2+ hepatocytes, while preserving metabolic function. ZNRF3 deletion promotes hepatocyte proliferation, which in turn becomes limited by RNF43 upregulation. Concomitant deletion of RNF43 in ZNRF3 mutant mice results in metabolic reprogramming of periportal hepatocytes and induces clonal expansion in a subset of hepatocytes, ultimately promoting liver tumors. Together, ZNRF3 and RNF43 cooperate to safeguard liver homeostasis by spatially and temporally restricting WNT/ß-Catenin activity, balancing metabolic function and hepatocyte proliferation.


Assuntos
Fígado , Ubiquitina-Proteína Ligases/genética , Animais , Proliferação de Células , Hepatócitos/metabolismo , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Camundongos , Células-Tronco/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
5.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919387

RESUMO

The EBI2 receptor regulates the immune system and is expressed in various immune cells including B and T lymphocytes. It is also expressed in astrocytes in the central nervous system (CNS) where it regulates pro-inflammatory cytokine release, cell migration and protects from chemically induced demyelination. Its signaling and expression are implicated in various diseases including multiple sclerosis, where its expression is increased in infiltrating immune cells in the white matter lesions. Here, for the first time, the EBI2 protein in the CNS cells in the human brain was examined. The function of the receptor in MO3.13 oligodendrocytes, as well as its role in remyelination in organotypic cerebellar slices, were investigated. Human brain sections were co-stained for EBI2 receptor and various markers of CNS-specific cells and the human oligodendrocyte cell line MO3.13 was used to investigate changes in EBI2 expression and cellular migration. Organotypic cerebellar slices prepared from wild-type and cholesterol 25-hydroxylase knock-out mice were used to study remyelination following lysophosphatidylcholine (LPC)-induced demyelination. The data showed that EBI2 receptor is present in OPCs but not in myelinating oligodendrocytes in the human brain and that EBI2 expression is temporarily upregulated in maturing MO3.13 oligodendrocytes. Moreover, we show that migration of MO3.13 cells is directly regulated by EBI2 and that its signaling is necessary for remyelination in cerebellar slices post-LPC-induced demyelination. The work reported here provides new information on the expression and role of EBI2 in oligodendrocytes and myelination and provides new tools for modulation of oligodendrocyte biology and therapeutic approaches for demyelinating diseases.


Assuntos
Encéfalo/citologia , Cerebelo/citologia , Oligodendroglia/citologia , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/citologia , Animais , Encéfalo/metabolismo , Cerebelo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligodendroglia/metabolismo , Receptores Acoplados a Proteínas G/genética , Remielinização , Células-Tronco/metabolismo
6.
Nat Microbiol ; 6(6): 792-805, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33846627

RESUMO

Human physiology is regulated by endogenous signalling compounds, including fatty acid amides (FAAs), chemical mimics of which are made by bacteria. The molecules produced by human-associated microbes are difficult to identify because they may only be made in a local niche or they require a substrate sourced from the host, diet or other microbes. We identified a set of uncharacterized gene clusters in metagenomics data from the human gut microbiome. These clusters were discovered to make FAAs by fusing exogenous fatty acids with amines. Using an in vitro assay, we tested their ability to incorporate 25 fatty acids and 53 amines known to be present in the human gut, from which the production of six FAAs was deduced (oleoyl dopamine, oleoyl tyramine, lauroyl tryptamine, oleoyl aminovaleric acid, α-linolenoyl phenylethylamine and caproyl tryptamine). These molecules were screened against panels of human G-protein-coupled receptors to deduce their putative human targets. Lauroyl tryptamine is found to be an antagonist to the immunomodulatory receptor EBI2 against its native oxysterol ligand (0.98 µM half-maximal inhibitory concentration), is produced in culture by Eubacterium rectale and is present in human faecal samples. FAAs produced by Clostridia may serve as a mechanism to modulate their host by mimicking human signalling molecules.


Assuntos
Aminas/metabolismo , Ácidos Graxos/metabolismo , Firmicutes/metabolismo , Microbioma Gastrointestinal , Neurotransmissores/metabolismo , Aminas/química , Dieta , Ácidos Graxos/química , Firmicutes/classificação , Firmicutes/genética , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Humanos , Neurotransmissores/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
7.
Br J Pharmacol ; 178(16): 3140-3156, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33145756

RESUMO

Immune cell trafficking is an important mechanism for the pathogenesis of inflammatory bowel disease (IBD). The oxysterol receptor GPR183 and its ligands, dihydroxylated oxysterols, can mediate positioning of immune cells including innate lymphoid cells. GPR183 has been mapped to an IBD risk locus, however another gene, Ubac2 is encoded on the reverse strand and associated with Behçet's disease, therefore the role of GPR183 as a genetic risk factor requires validation. GPR183 and production of its oxysterol ligands are up-regulated in human IBD and murine colitis. Gpr183 inactivation reduced severity of colitis in group 3 innate lymphoid cells-dependent colitis and in IL-10 colitis but not in dextran sodium sulphate colitis. Irrespectively, Gpr183 knockout strongly reduced accumulation of intestinal lymphoid tissue in health and all colitis models. In conclusion, genetic, translational and experimental studies implicate GPR183 in IBD pathogenesis and GPR183-dependent cell migration might be a therapeutic drug target for IBD. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Humanos , Imunidade Inata , Doenças Inflamatórias Intestinais/tratamento farmacológico , Linfócitos , Camundongos , Receptores Acoplados a Proteínas G , Receptores de Esteroides
8.
J Lipid Res ; 60(7): 1270-1283, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31113816

RESUMO

Nonalcoholic steatohepatitis (NASH), a primary cause of liver disease, leads to complications such as fibrosis, cirrhosis, and carcinoma, but the pathophysiology of NASH is incompletely understood. Epstein-Barr virus-induced G protein-coupled receptor 2 (EBI2) and its oxysterol ligand 7α,25-dihydroxycholesterol (7α,25-diHC) are recently discovered immune regulators. Several lines of evidence suggest a role of oxysterols in NASH pathogenesis, but rigorous testing has not been performed. We measured oxysterol levels in the livers of NASH patients by LC-MS and tested the role of the EBI2-7α,25-diHC system in a murine feeding model of NASH. Free oxysterol profiling in livers from NASH patients revealed a pronounced increase in 24- and 7-hydroxylated oxysterols in NASH compared with controls. Levels of 24- and 7-hydroxylated oxysterols correlated with histological NASH activity. Histological analysis of murine liver samples demonstrated ballooning and liver inflammation. No significant genotype-related differences were observed in Ebi2-/- mice and mice with defects in the 7α,25-diHC synthesizing enzymes CH25H and CYP7B1 compared with wild-type littermate controls, arguing against an essential role of these genes in NASH pathogenesis. Elevated 24- and 7-hydroxylated oxysterol levels were confirmed in murine NASH liver samples. Our results suggest increased bile acid synthesis in NASH samples, as judged by the enhanced level of 7α-hydroxycholest-4-en-3-one and impaired 24S-hydroxycholesterol metabolism as characteristic biochemical changes in livers affected by NASH.


Assuntos
Fígado/metabolismo , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Oxisteróis/metabolismo , Adulto , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Colesterol/sangue , Cromatografia Líquida , Citometria de Fluxo , Humanos , Hidroxicolesteróis/sangue , Hidroxicolesteróis/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Hepatopatia Gordurosa não Alcoólica/sangue , Oxisteróis/sangue , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo
9.
Cell Stem Cell ; 25(1): 39-53.e10, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31080135

RESUMO

Biliary epithelial cells (BECs) form bile ducts in the liver and are facultative liver stem cells that establish a ductular reaction (DR) to support liver regeneration following injury. Liver damage induces periportal LGR5+ putative liver stem cells that can form BEC-like organoids, suggesting that RSPO-LGR4/5-mediated WNT/ß-catenin activity is important for a DR. We addressed the roles of this and other signaling pathways in a DR by performing a focused CRISPR-based loss-of-function screen in BEC-like organoids, followed by in vivo validation and single-cell RNA sequencing. We found that BECs lack and do not require LGR4/5-mediated WNT/ß-catenin signaling during a DR, whereas YAP and mTORC1 signaling are required for this process. Upregulation of AXIN2 and LGR5 is required in hepatocytes to enable their regenerative capacity in response to injury. Together, these data highlight heterogeneity within the BEC pool, delineate signaling pathways involved in a DR, and clarify the identity and roles of injury-induced periportal LGR5+ cells.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ductos Biliares/patologia , Proteínas de Ciclo Celular/metabolismo , Células Epiteliais/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteína Axina/genética , Proteína Axina/metabolismo , Proteínas de Ciclo Celular/genética , Células Cultivadas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Modelos Animais de Doenças , Humanos , Regeneração Hepática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piridinas/toxicidade , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Trombospondinas/genética , Trombospondinas/metabolismo , Via de Sinalização Wnt , Proteínas de Sinalização YAP
10.
J Steroid Biochem Mol Biol ; 190: 19-28, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30902677

RESUMO

Oxysterols are cholesterol metabolites derived through either autoxidation or enzymatic processes. They consist of a large family of bioactive lipids that have been associated with the progression of multiple pathologies. In order to unravel (patho-)physiological mechanisms involving oxysterols, it is crucial to elucidate the underlying formation and degradation of oxysterols. A role of 11ß-hydroxysteroid dehydrogenases (11ß-HSDs) in oxysterol metabolism by catalyzing the interconversion of 7-ketocholesterol (7kC) and 7ß-hydroxycholesterol (7ßOHC) has already been reported. The present study addresses a function of 11ß-HSD1 in the enzymatic generation of 7ß,25-dihydroxycholesterol (7ß25OHC) from 7-keto,25-hydroxycholesterol (7k25OHC) and tested whether 11ß-HSD2 is able to catalyze the reverse reaction. For the first time, using recombinant enzymes, the formation of 7k25OHC from 7kC by cholesterol 25-hydroxylase (CH25H) and further stereospecific oxoreduction to 7ß25OHC by human and mouse 11ß-HSD1 could be demonstrated. Additionally, experiments using human 11ß-HSD2 showed the oxidation of 7ß25OHC to 7k25OHC. Molecular modeling provided an explanation for the stereospecific interconversion of 7ß25OHC and 7k25OHC. Production of the Epstein-Barr virus-induced gene 2 (EBI2) ligand 7ß25OHC from 7k25OHC in challenged tissue by 11ß-HSD1 may be important in inflammation. In conclusion, these results demonstrate a novel glucocorticoid-independent pre-receptor regulation mediated by 11ß-HSDs.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Hidroxicolesteróis/metabolismo , Cetocolesteróis/metabolismo , Animais , Células HEK293 , Humanos , Hidroxilação , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Oxirredução , Células RAW 264.7
11.
Mucosal Immunol ; 12(3): 733-745, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30742043

RESUMO

The gene encoding for Epstein-Barr virus-induced G-protein-coupled receptor 2 (EBI2) is a risk gene for inflammatory bowel disease (IBD). Together with its oxysterol ligand 7α,25-dihydroxycholesterol, EBI2 mediates migration and differentiation of immune cells. However, the role of EBI2 in the colonic immune system remains insufficiently studied. We found increased mRNA expression of EBI2 and oxysterol-synthesizing enzymes (CH25H, CYP7B1) in the inflamed colon of patients with ulcerative colitis and mice with acute or chronic dextran sulfate sodium (DSS) colitis. Accordingly, we detected elevated levels of 25-hydroxylated oxysterols, including 7α,25-dihydroxycholesterol in mice with acute colonic inflammation. Knockout of EBI2 or CH25H did not affect severity of DSS colitis; however, inflammation was decreased in male EBI2-/- mice in the IL-10 colitis model. The colonic immune system comprises mucosal lymphoid structures, which accumulate upon chronic inflammation in IL-10-deficient mice and in chronic DSS colitis. However, EBI2-/- mice formed significantly less colonic lymphoid structures at baseline and showed defects in inflammation-induced accumulation of lymphoid structures. In summary, we report induction of the EBI2-7α,25-dihydroxycholesterol axis in colitis and a role of EBI2 for the accumulation of lymphoid tissue during homeostasis and inflammation. These data implicate the EBI2-7α,25-dihydroxycholesterol axis in IBD pathogenesis.


Assuntos
Colite/metabolismo , Colo/patologia , Receptores Acoplados a Proteínas G/metabolismo , Estruturas Linfoides Terciárias/patologia , Animais , Movimento Celular , Células Cultivadas , Colite/induzido quimicamente , Colite/imunologia , Sulfato de Dextrana , Modelos Animais de Doenças , Feminino , Humanos , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxisteróis/metabolismo , Receptores Acoplados a Proteínas G/genética , Fatores Sexuais , Transdução de Sinais
12.
Neurosci Lett ; 673: 12-18, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29496607

RESUMO

Parkin associated endothelin like receptor (PAELR) is G-protein coupled and ubiquitinated by parkin, promoting its degradation. In autosomal recessive Parkinson's disease, mutations in parkin lead to PAELR aggregation in the endoplasmic reticulum (ER), ER stress, neurotoxicity and cell death. We have identified previously that the protein kinase C interacting protein (PICK1) interacts with and regulates the expression and cell toxicity of PAELR. Here, we experimentally identify and provide in-silico modelling of a novel interaction between PAELR and GABARAPL2 (γ-aminobutyrate type A receptor associated protein like 2), which is an autophagosome-specific Ub-like protein implicated in vesicle trafficking and autophagy. We show that the family of GABARAPs interact with the carboxy terminal (ct) of PAELR and find the cysteine rich region (-CCCCCC-EEC) of ct-PAELR interacts with the GABAA binding site of GABARAPL2. This interaction is modelled by in-slico analysis and confirmed using affinity chromatography, showing Myc-tagged GABARAPL2 is retained by a GST fusion of the ct-PAELR. We also demonstrate that transient transfection of GABARAPL2 in HEK293 cells reduces PAELR expression. This study supports the idea that protein levels of PAELR are likely regulated by a multitude of proteins including parkin, PICK1 and GABARAPL2 via mechanisms that include ubiquitination, proteasomal degradagtion and autophagy.


Assuntos
Família da Proteína 8 Relacionada à Autofagia/metabolismo , Doença de Parkinson/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Autofagia , Proteínas de Transporte , Simulação por Computador , Células HEK293 , Humanos , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Ubiquitinação
13.
Neuropharmacology ; 133: 121-128, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29374507

RESUMO

The endogenous oxysterol 7α, 25-dihydroxycholesterol (7α25HC) ligand activates the G protein-coupled receptor EBI2 to regulate T cell-dependant antibody response and B cell migration. We have demonstrated that EBI2 is expressed in human and mouse astrocytes, that 7α25HC induces intracellular signalling and astrocyte migration, and that EBI2 plays a role in the crosstalk between astrocytes and macrophages. Recently, we demonstrate that EBI2 regulates myelin development and inhibits LPC-induced demyelination. Here, we show that 7α25HC inhibits LPS- and IL17/TNF-induced pro-inflammatory cytokine release in astrocytes. We observe the following: 1. Human astrocytes treated with IL17/TNF increases the nuclear translocation of NFκB, which is attenuated by pre-treatment with 7α25HC; 2. IL17/TNF increases cell impedance in human astrocytes, which is also attenuated by pre-treatment with 7α25HC; 3. The EBI2 antagonist NIBR189 inhibits these effects of 7α25HC, supporting the role of EBI2; 4. in vivo data corroborate these in vitro findings, showing that EBI2 knock-out (KO) animals display enhanced pro-inflammatory cytokine in response to LPS challenge, in the brain. These results demonstrate a role for oxysterol/EBI2 signalling in attenuating the response of astrocytes to pro-inflammatory signals as well as limiting the levels of pro-inflammatory cytokines in the brain.


Assuntos
Astrócitos/metabolismo , Citocinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Colesterol/análogos & derivados , Colesterol/farmacologia , Citocinas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Ratos , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos
14.
Sci Rep ; 8(1): 1799, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29379065

RESUMO

We generated induced pluripotent stem cells (iPSCs) from patient fibroblasts to yield cell lines containing varying degrees of heteroplasmy for a m.13514 A > G mtDNA point mutation (2 lines) and for a ~6 kb single, large scale mtDNA deletion (3 lines). Long term culture of the iPSCs containing a single, large-scale mtDNA deletion showed consistent increase in mtDNA deletion levels with time. Higher levels of mtDNA heteroplasmy correlated with increased respiratory deficiency. To determine what changes occurred in deletion level during differentiation, teratomas comprising all three embryonic germ layers were generated from low (20%) and intermediate heteroplasmy (55%) mtDNA deletion clones. Regardless of whether iPSCs harbouring low or intermediate mtDNA heteroplasmy were used, the final levels of heteroplasmy in all teratoma germ layers increased to a similar high level (>60%). Thus, during human stem cell division, cells not only tolerate high mtDNA deletion loads but seem to preferentially replicate deleted mtDNA genomes. This has implications for the involvement of mtDNA deletions in both disease and ageing.


Assuntos
DNA Mitocondrial/genética , Deleção de Sequência/genética , Diferenciação Celular/genética , Linhagem Celular , Células Clonais/metabolismo , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/genética , Mutação Puntual/genética
15.
Proc Natl Acad Sci U S A ; 115(2): E180-E189, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29269392

RESUMO

PARKIN, an E3 ligase mutated in familial Parkinson's disease, promotes mitophagy by ubiquitinating mitochondrial proteins for efficient engagement of the autophagy machinery. Specifically, PARKIN-synthesized ubiquitin chains represent targets for the PINK1 kinase generating phosphoS65-ubiquitin (pUb), which constitutes the mitophagy signal. Physiological regulation of PARKIN abundance, however, and the impact on pUb accumulation are poorly understood. Using cells designed to discover physiological regulators of PARKIN abundance, we performed a pooled genome-wide CRISPR/Cas9 knockout screen. Testing identified genes individually resulted in a list of 53 positive and negative regulators. A transcriptional repressor network including THAP11 was identified and negatively regulates endogenous PARKIN abundance. RNAseq analysis revealed the PARKIN-encoding locus as a prime THAP11 target, and THAP11 CRISPR knockout in multiple cell types enhanced pUb accumulation. Thus, our work demonstrates the critical role of PARKIN abundance, identifies regulating genes, and reveals a link between transcriptional repression and mitophagy, which is also apparent in human induced pluripotent stem cell-derived neurons, a disease-relevant cell type.


Assuntos
Sistemas CRISPR-Cas , Regulação da Expressão Gênica , Genoma Humano/genética , Mitofagia/genética , Proteínas Repressoras/genética , Ubiquitina-Proteína Ligases/genética , Linhagem Celular Tumoral , Células Cultivadas , Células HCT116 , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Recém-Nascido , Neurônios/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
16.
J Neuroinflammation ; 14(1): 250, 2017 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-29246262

RESUMO

BACKGROUND: The G protein-coupled receptor EBI2 (Epstein-Barr virus-induced gene 2) is activated by 7α, 25-dihydroxycholesterol (7α25HC) and plays a role in T cell-dependant antibody response and B cell migration. Abnormal EBI2 signaling is implicated in a range of autoimmune disorders; however, its role in the CNS remains poorly understood. METHODS: Here we characterize the role of EBI2 in myelination under normal and pathophysiological conditions using organotypic cerebellar slice cultures and EBI2 knock-out (KO) animals. RESULTS: We find that MBP expression in brains taken from EBI2 KO mice is delayed compared to those taken from wild type (WT) mice. In agreement with these in vivo findings, we show that antagonism of EBI2 reduces MBP expression in vitro. Importantly, we demonstrate that EBI2 activation attenuates lysolecithin (LPC)-induced demyelination in mouse organotypic slice cultures. Moreover, EBI2 activation also inhibits LPC-mediated release of pro-inflammatory cytokines such as IL6 and IL1ß in cerebellar slices. CONCLUSIONS: These results, for the first time, display a role for EBI2 in myelin development and protection from demyelination under pathophysiological conditions and suggest that modulation of this receptor may be beneficial in neuroinflammatory and demyelinating disorders such as multiple sclerosis.


Assuntos
Cerebelo/metabolismo , Doenças Desmielinizantes/metabolismo , Bainha de Mielina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Doenças Desmielinizantes/induzido quimicamente , Lisofosfatidilcolinas/toxicidade , Camundongos , Camundongos Knockout , Proteína Básica da Mielina/biossíntese , Técnicas de Cultura de Órgãos
18.
Cell Rep ; 18(5): 1270-1284, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28147280

RESUMO

Arrival of encephalitogenic T cells at inflammatory foci represents a critical step in development of experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. EBI2 and its ligand, 7α,25-OHC, direct immune cell localization in secondary lymphoid organs. CH25H and CYP7B1 hydroxylate cholesterol to 7α,25-OHC. During EAE, we found increased expression of CH25H by microglia and CYP7B1 by CNS-infiltrating immune cells elevating the ligand concentration in the CNS. Two critical pro-inflammatory cytokines, interleukin-23 (IL-23) and interleukin-1 beta (IL-1ß), maintained expression of EBI2 in differentiating Th17 cells. In line with this, EBI2 enhanced early migration of encephalitogenic T cells into the CNS in a transfer EAE model. Nonetheless, EBI2 was dispensable in active EAE. Human Th17 cells do also express EBI2, and EBI2 expressing cells are abundant within multiple sclerosis (MS) white matter lesions. These findings implicate EBI2 as a mediator of CNS autoimmunity and describe mechanistically its contribution to the migration of autoreactive T cells into inflamed organs.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/fisiologia , Movimento Celular/fisiologia , Sistema Nervoso Central/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Esclerose Múltipla/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Autoimunidade/fisiologia , Sistema Nervoso Central/fisiologia , Família 7 do Citocromo P450/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Feminino , Interleucina-1beta/metabolismo , Interleucina-23/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esteroide Hidroxilases/metabolismo , Células Th17/metabolismo , Células Th17/fisiologia
19.
Cell Rep ; 18(1): 213-224, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28052250

RESUMO

The interaction between oxysterols and the G protein-coupled receptor Epstein-Barr virus-induced gene 2 (EBI2) fine-tunes immune cell migration, a mechanism efficiently targeted by several disease-modifying treatments developed to treat multiple sclerosis (MS), such as natalizumab. We previously showed that memory CD4+ T lymphocytes migrate specifically in response to 7α,25-dihydroxycholesterol (7α,25-OHC) via EBI2 in the MS murine model experimental autoimmune encephalomyelitis. However, the EBI2 expression profile in human lymphocytes in both healthy and MS donors is unknown. Here, we characterize EBI2 biology in human lymphocytes. We observed that EBI2 is functionally expressed on memory CD4+ T cells and is enhanced under natalizumab treatment. These data suggest a significant role for EBI2 in human CD4+ T cell migration, notably in patients with MS. Better knowledge of EBI2 involvement in autoimmunity may therefore lead to an improved understanding of the physiopathology of MS.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Memória Imunológica , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Natalizumab/uso terapêutico , Receptores Acoplados a Proteínas G/metabolismo , Adulto , Antígenos CD11/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Humanos , Hidroxicolesteróis/farmacologia , Memória Imunológica/efeitos dos fármacos , Esclerose Múltipla/patologia , Natalizumab/farmacologia
20.
Am J Hum Genet ; 100(2): 323-333, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28089251

RESUMO

Nephronophthisis (NPH), an autosomal-recessive tubulointerstitial nephritis, is the most common cause of hereditary end-stage renal disease in the first three decades of life. Since most NPH gene products (NPHP) function at the primary cilium, NPH is classified as a ciliopathy. We identified mutations in a candidate gene in eight individuals from five families presenting late-onset NPH with massive renal fibrosis. This gene encodes MAPKBP1, a poorly characterized scaffolding protein for JNK signaling. Immunofluorescence analyses showed that MAPKBP1 is not present at the primary cilium and that fibroblasts from affected individuals did not display ciliogenesis defects, indicating that MAPKBP1 may represent a new family of NPHP not involved in cilia-associated functions. Instead, MAPKBP1 is recruited to mitotic spindle poles (MSPs) during the early phases of mitosis where it colocalizes with its paralog WDR62, which plays a key role at MSP. Detected mutations compromise recruitment of MAPKBP1 to the MSP and/or its interaction with JNK2 or WDR62. Additionally, we show increased DNA damage response signaling in fibroblasts from affected individuals and upon knockdown of Mapkbp1 in murine cell lines, a phenotype previously associated with NPH. In conclusion, we identified mutations in MAPKBP1 as a genetic cause of juvenile or late-onset and cilia-independent NPH.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Doenças Renais Císticas/congênito , Adolescente , Alelos , Animais , Proteínas de Ciclo Celular , Criança , Cílios/genética , Dano ao DNA/genética , Modelos Animais de Doenças , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibrose , Regulação da Expressão Gênica , Humanos , Rim/citologia , Rim/metabolismo , Doenças Renais Císticas/diagnóstico , Doenças Renais Císticas/genética , Falência Renal Crônica/diagnóstico , Falência Renal Crônica/genética , Camundongos , Camundongos Knockout , Mitose , Mutação , Células NIH 3T3 , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Linhagem , Fenótipo , Transdução de Sinais , Polos do Fuso/metabolismo , Adulto Jovem , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...